Cookie Settings

By clicking "Agree," you consent to the storage of cookies on your device to enhance site navigation, analyze site usage, and support our marketing efforts. For more information, please refer to our Privacy Policy.

Consulting

Marketing & eCommerce

Without data? Doesn't work!

Customers now not only expect the products they have ordered to be delivered within a very short period of time, but also that they are targeted and addressed in line with their behavior and purchases.

This is supported not only by the clean set-up of tracking, but also by a customer data platform, which collects customer data in accordance with GDPR and provides marketing and sales - not only for higher sales, but also the best user experience.

Why is data so important in marketing and eCommerce?

Understanding customers better

Of course, you can talk to customers to find out what their likes and dislikes look like, what they particularly like, and how they want to be addressed. However, it is much more effective and faster to measure customer behavior, react quickly and thus improve the customer journey from the first marketing touchpoint to purchase.

Target group segmentation

Through the targeted use of data in marketing, the target group for brands and eCommerce be effectively segmented and the ideal target group identified. All marketing measures can build on this so that they reach the right consumers in a targeted manner — both in the B2C and in the B2B environment.

Personalizing the customer experience

Let's personalize the shopping experience. There are a number of ways this is possible in eCommerce and marketing, from recommendations in the web shop to a personal contact in your own app to emails based on user behavior. This means that consumers are better off than from an impersonal experience that “everyone” receives — and that ensures understanding and trust.

Predicting trends

Based on data relating to the historical shopping behavior of customers, forecasts of trends in sales can be made. In this way, companies can better plan their inventories, but also use resources and employees, as well as their marketing activities effectively.

This is how we go about establishing data in marketing and eCommerce

From the status quo to establishing data analyses to enabling all employees who work with data — together, we are making eCommerce and marketing even better than they already are.

Phase 1

Status check - the audit

As a first step of cooperation, we prepare a thorough analysis of the current Status Quo in the area of marketing. To do this, we analyze the existing data sources, challenge the existing marketing strategies and find out how data-based they are, examine the eCommerce platforms and look at what and how much customer data has already been collected. In doing so, we also identify the first use cases.

Phase 2

Goal definition and strategy development

In the next step, we define clear goals for using data in marketing and eCommerce with stakeholders. To this end, we work together to find out which challenges have priority right now, whether it is improving customer contact, positioning products or designing prices, but also whether artificial intelligence is already an issue.

Phase 3

Implementing data analytics

Tools that make data analysis and marketing automation possible must be selected to suit the stakeholders who work with the strategies but also to match the rest of the tech stack. To optimize processes, it is often useful to use artificial intelligence, which can already make some processes more efficient. Segmenting customers and personalizing marketing campaigns is also possible with the right tools.

Phase 4

Personalizing the customer experience

Data analyses can be used to obtain structured data that can be used to personalize and optimize the customer experience. To this end, we develop targeted marketing campaigns together with our clients' marketing and data departments, revise the web shop interface and optimize product recommendations.

Phase 5

Enable

We love it when a plan works — and when customers can continue working without us. That is why we are finally enabling employees from the departments so that in the future, even without The Data Institute, they will receive the marketing and eCommerce analyses they need to improve the customer experience and make data-driven decisions.

Grafik des Frameworks mit dem Data Institute arbeitet.

Marketing and eCommerce in our framework

We always work with the framework organization, culture and architecture.

Because in our opinion, these three areas are the most important factors for successfully anchoring data in the company in the long term.

Marketing and eCommerce are also concerned with these three areas. We not only clarify the question of responsibilities, but also the processes through which data can be used effectively in marketing. We support you with the selection of tools and thus build a clean one in the long term architecture for everyone who works with data in the company

The Data Institute — the strong partner for the use of data

The right message to the right user at the right time — that is the dream in marketing and eCommerce. We are making this dream come true because data can provide exactly the impact that companies want.

What is a data audit anyway?

Using data in marketing and e-commerce means a fundamental transformation of how companies interact with their customers and position their products or services on the market. By collecting and analyzing data, companies can gain deeper insights into consumer behavior, preferences, and trends. This enables a more targeted, personalized and effective customer approach. Data-driven marketing and e-commerce lead to optimized marketing strategies, improved customer experience, efficient pricing and stronger overall market positioning. In a world where competition is constantly increasing, data offers companies the opportunity to stand out through tailored offerings and unique customer experiences.

Who needs our marketing and eCommerce solutions?

The Data Institute's solutions are aimed at companies that want to take their marketing to the next level. Should customers be better understood by the people responsible in the company? Should the sale of products be increased?

Data is the solution.

These not only support organic, but also PPC and influencer marketing, but also help product owners and purchasing. Efficient use of data can not only increase sales, but also reduce costs, whether in marketing attribution, automating processes, or tracking customer behavior in the web shop and on other channels.

Marketing without data? It doesn't exist.

We can be happy that we now have so much data available. Because earlier - when we were not yet able to measure this data - companies had to carry out lengthy 1:1 surveys with customers and interested parties to find out whether marketing measures were working and whether the user experience in the web shop was well received.

Now we can track our customers almost incessantly, interpret their behavior and ensure that they have the best possible experience in our online shop.

But this is also what users now want — they expect to be treated in the same way and at the same time that their wishes for data protection are respected.

Companies are faced with the challenge of finding the ideal solution - we support them in doing so!

Abstrakte Form eines Pfades des Data Institute

What services can be combined with
Marketing & eCommerce
?

<svg width=" 100%" height=" 100%" viewBox="0 0 62 62" fill="none" xmlns="http://www.w3.org/2000/svg"> <g clip-path="url(#clip0_5879_3513)"> <path d="M19.376 60.0625H11.626C10.5992 60.0594 9.61537 59.6502 8.88933 58.9242C8.16329 58.1981 7.75404 57.2143 7.75098 56.1875V42.625C6.72421 42.6219 5.74037 42.2127 5.01433 41.4867C4.28829 40.7606 3.87904 39.7768 3.87598 38.75V27.125C3.86178 26.3578 4.00243 25.5956 4.2895 24.884C4.57658 24.1723 5.0042 23.5259 5.5468 22.9833C6.08939 22.4407 6.73582 22.0131 7.44744 21.726C8.15906 21.439 8.92126 21.2983 9.68848 21.3125H21.3135C22.0807 21.2983 22.8429 21.439 23.5545 21.726C24.2661 22.0131 24.9126 22.4407 25.4552 22.9833C25.9977 23.5259 26.4254 24.1723 26.7124 24.884C26.9995 25.5956 27.1402 26.3578 27.126 27.125V38.75C27.1229 39.7768 26.7137 40.7606 25.9876 41.4867C25.2616 42.2127 24.2777 42.6219 23.251 42.625V56.1875C23.2479 57.2143 22.8387 58.1981 22.1126 58.9242C21.3866 59.6502 20.4027 60.0594 19.376 60.0625ZM9.68848 25.1875C9.42999 25.172 9.17114 25.2114 8.92903 25.3033C8.68692 25.3952 8.46706 25.5374 8.28395 25.7205C8.10084 25.9036 7.95865 26.1235 7.86678 26.3656C7.77491 26.6077 7.73544 26.8665 7.75098 27.125V38.75H11.626V56.1875H19.376V38.75H23.251V27.125C23.2665 26.8665 23.227 26.6077 23.1352 26.3656C23.0433 26.1235 22.9011 25.9036 22.718 25.7205C22.5349 25.5374 22.315 25.3952 22.0729 25.3033C21.8308 25.2114 21.572 25.172 21.3135 25.1875H9.68848ZM15.501 19.375C13.9682 19.375 12.4698 18.9205 11.1953 18.0689C9.92083 17.2173 8.92749 16.0069 8.34091 14.5908C7.75433 13.1747 7.60086 11.6164 7.89989 10.1131C8.19893 8.6097 8.93704 7.22878 10.0209 6.14493C11.1048 5.06107 12.4857 4.32295 13.989 4.02392C15.4924 3.72488 17.0506 3.87836 18.4668 4.46494C19.8829 5.05152 21.0933 6.04485 21.9449 7.31933C22.7964 8.59381 23.251 10.0922 23.251 11.625C23.2484 13.6796 22.4311 15.6494 20.9782 17.1022C19.5254 18.5551 17.5556 19.3724 15.501 19.375ZM15.501 7.75C14.7346 7.75 13.9854 7.97727 13.3481 8.40306C12.7109 8.82885 12.2142 9.43404 11.9209 10.1421C11.6277 10.8502 11.5509 11.6293 11.7004 12.381C11.85 13.1327 12.219 13.8231 12.7609 14.365C13.3029 14.907 13.9933 15.276 14.745 15.4255C15.4967 15.5751 16.2758 15.4983 16.9839 15.205C17.6919 14.9117 18.2971 14.4151 18.7229 13.7778C19.1487 13.1406 19.376 12.3914 19.376 11.625C19.375 10.5976 18.9664 9.61258 18.2399 8.8861C17.5134 8.15962 16.5284 7.75103 15.501 7.75ZM55.7351 8.246C54.278 6.76535 52.3111 5.89611 50.2353 5.81546C48.1595 5.73482 46.131 6.44885 44.5635 7.812C42.9959 6.44885 40.9675 5.73482 38.8917 5.81546C36.8159 5.89611 34.8489 6.76535 33.3918 8.246C31.8601 9.81001 31.0022 11.912 31.0022 14.1011C31.0022 16.2903 31.8601 18.3922 33.3918 19.9563L44.5596 31.2713L44.5635 31.2674L44.5673 31.2693L55.7351 19.9563C57.2668 18.3922 58.1247 16.2903 58.1247 14.1011C58.1247 11.912 57.2668 9.81001 55.7351 8.246ZM52.9761 17.2341L44.5673 25.7533L44.5635 25.7494L44.5596 25.7533L36.1509 17.2341C35.3299 16.3979 34.8699 15.2729 34.8699 14.1011C34.8699 12.9293 35.3299 11.8043 36.1509 10.9682C36.9696 10.1724 38.0664 9.72714 39.2082 9.72714C40.35 9.72714 41.4468 10.1724 42.2656 10.9682L44.5538 13.3068L44.5635 13.2971L44.5732 13.3068L46.8594 10.9682C47.6783 10.1718 48.7755 9.7262 49.9178 9.7262C51.06 9.7262 52.1572 10.1718 52.9761 10.9682C53.7971 11.8043 54.257 12.9293 54.257 14.1011C54.257 15.2729 53.7971 16.3979 52.9761 17.2341Z" fill="currentColor"/> </g> <defs> <clipPath id="clip0_5879_3513"> <rect width="62" height="62" fill="currentColor"/> </clipPath> </defs> </svg>

Customer Centricity

The focus is always on customers and their wishes how to measure it and translate insights into action.

<svg width=" 100%" height=" 100%" viewBox="0 0 62 62" fill="none" xmlns="http://www.w3.org/2000/svg"> <g clip-path="url(#clip0_5879_2165)"> <path d="M21.3122 46.5H40.6872V50.375H21.3122V46.5ZM25.1872 54.25H36.8122V58.125H25.1872V54.25ZM30.9997 3.875C25.8611 3.875 20.933 5.91629 17.2995 9.54981C13.666 13.1833 11.6247 18.1114 11.6247 23.25C11.4937 26.0658 12.0331 28.8726 13.1985 31.4392C14.364 34.0059 16.1222 36.2592 18.3285 38.0138C20.266 39.8156 21.3122 40.8425 21.3122 42.625H25.1872C25.1872 39.06 23.0366 37.0644 20.9441 35.1462C19.1332 33.7595 17.69 31.9499 16.7408 29.8759C15.7917 27.802 15.3655 25.5269 15.4997 23.25C15.4997 19.1391 17.1327 15.1967 20.0396 12.2898C22.9464 9.38303 26.8889 7.75 30.9997 7.75C35.1106 7.75 39.0531 9.38303 41.9599 12.2898C44.8667 15.1967 46.4997 19.1391 46.4997 23.25C46.6317 25.5286 46.2025 27.8047 45.2499 29.8788C44.2973 31.9529 42.8504 33.7616 41.036 35.1462C38.9628 37.0837 36.8122 39.0213 36.8122 42.625H40.6872C40.6872 40.8425 41.7141 39.8156 43.671 37.9944C45.8757 36.2428 47.6331 33.9929 48.7986 31.4295C49.964 28.8662 50.5042 26.0628 50.3747 23.25C50.3747 20.7056 49.8736 18.1862 48.8999 15.8355C47.9262 13.4848 46.499 11.3489 44.6999 9.54981C42.9008 7.75067 40.7649 6.32352 38.4142 5.34983C36.0635 4.37615 33.5441 3.875 30.9997 3.875Z" fill="currentColor"/> </g> <defs> <clipPath id="clip0_5879_2165"> <rect width="62" height="62" fill="currentColor"/> </clipPath> </defs> </svg>

Data Strategy

When what happens how and why — that explains the data strategy.

<svg width=" 100%" height=" 100%" viewBox="0 0 62 62" fill="none" xmlns="http://www.w3.org/2000/svg"> <g clip-path="url(#clip0_5994_7571)"> <path d="M52.3125 46.5C51.4494 46.5039 50.5984 46.7026 49.8228 47.0813L41.4916 38.75H34.875V42.625H39.8854L47.0832 49.8228C46.7043 50.5984 46.505 51.4494 46.5 52.3125C46.5 53.4621 46.8409 54.5859 47.4796 55.5418C48.1183 56.4976 49.0261 57.2426 50.0882 57.6826C51.1502 58.1225 52.3189 58.2376 53.4465 58.0133C54.574 57.789 55.6097 57.2355 56.4226 56.4226C57.2355 55.6097 57.789 54.574 58.0133 53.4465C58.2376 52.319 58.1225 51.1503 57.6825 50.0882C57.2426 49.0261 56.4976 48.1183 55.5417 47.4796C54.5859 46.8409 53.4621 46.5 52.3125 46.5ZM52.3125 54.25C51.9293 54.25 51.5547 54.1364 51.2361 53.9235C50.9175 53.7106 50.6691 53.408 50.5225 53.054C50.3758 52.6999 50.3375 52.3104 50.4122 51.9345C50.487 51.5587 50.6715 51.2135 50.9425 50.9425C51.2134 50.6715 51.5587 50.487 51.9345 50.4122C52.3103 50.3375 52.6999 50.3758 53.0539 50.5225C53.408 50.6691 53.7106 50.9175 53.9235 51.2361C54.1364 51.5547 54.25 51.9293 54.25 52.3125C54.25 52.8264 54.0459 53.3192 53.6825 53.6825C53.3192 54.0459 52.8264 54.25 52.3125 54.25ZM52.3125 25.1875C51.1143 25.1911 49.9465 25.5655 48.9696 26.2593C47.9927 26.9531 47.2546 27.9323 46.8565 29.0625H34.875V32.9375H46.8565C47.2134 33.9395 47.8389 34.8242 48.6646 35.4948C49.4903 36.1653 50.4845 36.5961 51.5384 36.7399C52.5923 36.8837 53.6655 36.735 54.6407 36.3101C55.6158 35.8852 56.4554 35.2005 57.0678 34.3307C57.6801 33.4609 58.0416 32.4396 58.1127 31.3783C58.1838 30.317 57.9618 29.2565 57.471 28.3128C56.9802 27.3691 56.2395 26.5785 55.3297 26.0273C54.42 25.4761 53.3762 25.1856 52.3125 25.1875ZM52.3125 32.9375C51.9293 32.9375 51.5547 32.8239 51.2361 32.611C50.9175 32.3981 50.6691 32.0955 50.5225 31.7415C50.3758 31.3874 50.3375 30.9979 50.4122 30.622C50.487 30.2462 50.6715 29.9009 50.9425 29.63C51.2134 29.359 51.5587 29.1745 51.9345 29.0997C52.3103 29.025 52.6999 29.0633 53.0539 29.21C53.408 29.3566 53.7106 29.605 53.9235 29.9236C54.1364 30.2422 54.25 30.6168 54.25 31C54.25 31.5139 54.0459 32.0067 53.6825 32.37C53.3192 32.7334 52.8264 32.9375 52.3125 32.9375ZM52.3125 3.875C50.7714 3.87654 49.2939 4.48942 48.2041 5.57914C47.1144 6.66887 46.5015 8.1464 46.5 9.6875C46.5066 10.6157 46.738 11.5284 47.1742 12.3477L39.9048 19.375H34.875V23.25H41.4702L49.9953 15.0118C50.7872 15.3571 51.6461 15.5215 52.5096 15.493C53.373 15.4644 54.2193 15.2438 54.9867 14.8469C55.7541 14.4501 56.4234 13.8872 56.9458 13.1991C57.4682 12.511 57.8306 11.715 58.0065 10.8692C58.1825 10.0234 58.1677 9.14899 57.9631 8.30963C57.7585 7.47027 57.3694 6.68709 56.8239 6.01711C56.2785 5.34712 55.5905 4.8072 54.8101 4.43664C54.0297 4.06608 53.1764 3.87421 52.3125 3.875ZM52.3125 11.625C51.9293 11.625 51.5547 11.5114 51.2361 11.2985C50.9175 11.0856 50.6691 10.783 50.5225 10.429C50.3758 10.0749 50.3375 9.68535 50.4122 9.30951C50.487 8.93368 50.6715 8.58845 50.9425 8.31748C51.2134 8.04652 51.5587 7.86199 51.9345 7.78723C52.3103 7.71247 52.6999 7.75084 53.0539 7.89749C53.408 8.04413 53.7106 8.29247 53.9235 8.61109C54.1364 8.92971 54.25 9.3043 54.25 9.6875C54.25 10.2014 54.0459 10.6942 53.6825 11.0575C53.3192 11.4209 52.8264 11.625 52.3125 11.625Z" fill="currentColor"/> <path d="M34.875 11.625H38.75V7.75H34.875C33.7709 7.75369 32.6804 7.99469 31.6775 8.45667C30.6747 8.91866 29.7829 9.59082 29.0625 10.4276C28.3421 9.59082 27.4503 8.91866 26.4475 8.45667C25.4446 7.99469 24.3541 7.75369 23.25 7.75H21.3125C16.6894 7.75513 12.257 9.59393 8.98799 12.863C5.71893 16.132 3.88013 20.5644 3.875 25.1875V36.8125C3.88013 41.4356 5.71893 45.868 8.98799 49.137C12.257 52.4061 16.6894 54.2449 21.3125 54.25H23.25C24.3541 54.2463 25.4446 54.0053 26.4475 53.5433C27.4503 53.0813 28.3421 52.4092 29.0625 51.5724C29.7829 52.4092 30.6747 53.0813 31.6775 53.5433C32.6804 54.0053 33.7709 54.2463 34.875 54.25H38.75V50.375H34.875C33.8476 50.374 32.8626 49.9654 32.1361 49.2389C31.4096 48.5124 31.001 47.5274 31 46.5V15.5C31.001 14.4726 31.4096 13.4876 32.1361 12.7611C32.8626 12.0346 33.8476 11.626 34.875 11.625ZM23.25 50.375H21.3125C18.0545 50.3692 14.9073 49.1916 12.4457 47.0572C9.9841 44.9229 8.37242 41.9743 7.905 38.75H11.625V34.875H7.75V27.125H13.5625C15.1036 27.1235 16.5811 26.5106 17.6709 25.4209C18.7606 24.3311 19.3735 22.8536 19.375 21.3125V17.4375H15.5V21.3125C15.5 21.8264 15.2959 22.3192 14.9325 22.6825C14.5692 23.0459 14.0764 23.25 13.5625 23.25H7.905C8.37242 20.0257 9.9841 17.0771 12.4457 14.9428C14.9073 12.8084 18.0545 11.6308 21.3125 11.625H23.25C24.2774 11.626 25.2624 12.0346 25.9889 12.7611C26.7154 13.4876 27.124 14.4726 27.125 15.5V23.25H23.25V27.125H27.125V34.875H23.25C21.7089 34.8765 20.2314 35.4894 19.1416 36.5791C18.0519 37.6689 17.439 39.1464 17.4375 40.6875V44.5625H21.3125V40.6875C21.3125 40.1736 21.5166 39.6808 21.88 39.3175C22.2433 38.9541 22.7361 38.75 23.25 38.75H27.125V46.5C27.124 47.5274 26.7154 48.5124 25.9889 49.2389C25.2624 49.9654 24.2774 50.374 23.25 50.375Z" fill="currentColor"/> </g> <defs> <clipPath id="clip0_5994_7571"> <rect width="62" height="62" fill="currentColor"/> </clipPath> </defs> </svg>

Machine Learning

Not a gimmick, but real added value

Data news for pros

Want to know more? Then subscribe to our newsletter! Regular news from the data world about new developments, tools, best practices and events!

Abstrakte Form eines Pfades des Data Institute